News

Experiment-driven computational simulation of materials

This is a synopsis of the paper by T. Zarrouk, R. Ibragimova, A.P. Bartók and M.A. Caro, “Experiment-Driven Atomistic Materials Modeling: A Case Study Combining X-Ray Photoelectron Spectroscopy and Machine Learning Potentials to Infer the Structure of Oxygen-Rich Amorphous Carbon”, J. Am. Chem. Soc., DOI:10.1021/jacs.4c01897, available as an Open Access PDF from the publisher’s website. …

Representing databases of materials and molecules in two dimensions

The research highlighted in this post is part of the following paper: “Cluster-based multidimensional scaling embedding tool for data visualization”, by P. Hernández-León and M.A. Caro, Phys. Scr. 99, 066004 (2024). Available Open Access . The figures in this article are reproduced from that publication under the CC-BY 4.0 license. One of the consequences of the emergence …

Understanding the structure of amorphous carbon and silicon with machine learning atomistic modeling

When we think about semiconductors the first ones to come to mind are silicon, germanium and the III-Vs (GaAs, InP, AlN, GaN, etc.), in their crystalline forms. In fact, the degree of crystallinity in these materials often dictates the quality of the devices that can be made with them. As an example, dislocation densities as …

Automated X-ray photoelectron spectroscopy (XPS) prediction for carbon-based materials: combining DFT, GW and machine learning

The details of this work are now published (open access ) in Chem. Mater. and our automated prediction tool is available from nanocarbon.fi/xps. Many popular experimental methods for determining the structure of materials rely on the periodic repetition of atomic arrangements present in crystals. A common example is X-ray diffraction. For amorphous materials, the lack …

Academy of Finland EuroHPC funding awarded to the group

We have been awarded Academy of Finland funding within the framework of the EuroHPC research program, which aims to support the transition to (pre-)exascale high-performance computing (HPC) platforms and quantum computing, among others. Miguel Caro will lead the ExaFF (“Exascale-ready machine learning force fields“) consortium as Principal Investigator and Consortium Coordinator. This project is a …

Structure and properties of nanoporous carbons

Nanoporous carbons are an emerging class of materials with important applications in energy storage. In particular, the ability of graphitic carbons to intercalate ions is exploited in commercial Li-ion batteries where the anode is (typically) made of graphite and Li ions become electrostatically bound to the carbon host as the battery is charged: electrons are …

Adding Van der Waals corrections to GAP force fields

This post is about the following paper (and the figures are reproduced from it and are copyright of the American Physical Society): “Machine learning force fields based on local parametrization of dispersion interactions: Application to the phase diagram of C60“, by Heikki Muhli, Xi Chen, Albert P. Bartók, Patricia Hernández-León, Gábor Csányi, Tapio Ala-Nissila, and …